11 research outputs found

    Aberrant Calcium Signaling in Astrocytes Inhibits Neuronal Excitability in a Human Down Syndrome Stem Cell Model.

    Get PDF
    Down syndrome (DS) is a genetic disorder that causes cognitive impairment. The staggering effects associated with an extra copy of human chromosome 21 (HSA21) complicates mechanistic understanding of DS pathophysiology. We examined the neuron-astrocyte interplay in a fully recapitulated HSA21 trisomy cellular model differentiated from DS-patient-derived induced pluripotent stem cells (iPSCs). By combining calcium imaging with genetic approaches, we discovered the functional defects of DS astroglia and their effects on neuronal excitability. Compared with control isogenic astroglia, DS astroglia exhibited more-frequent spontaneous calcium fluctuations, which reduced the excitability of co-cultured neurons. Furthermore, suppressed neuronal activity could be rescued by abolishing astrocytic spontaneous calcium activity either chemically by blocking adenosine-mediated signaling or genetically by knockdown of inositol triphosphate (IP3) receptors or S100B, a calcium binding protein coded on HSA21. Our results suggest a mechanism by which DS alters the function of astrocytes, which subsequently disturbs neuronal excitability

    Germline-Competent Mouse-Induced Pluripotent Stem Cell Lines Generated on Human Fibroblasts without Exogenous Leukemia Inhibitory Factor

    Get PDF
    Induced pluripotent stem (iPS) cells have attracted enormous attention due to their vast potential in regenerative medicine, pharmaceutical screening and basic research. Most prior established iPS cell lines were derived and maintained on mouse embryonic fibroblast (MEF) cells supplemented with exogenous leukemia inhibitory factor (LIF). Drawbacks of MEF cells impede optimization as well as dissection of reprogramming events and limit the usage of iPS cell derivatives in therapeutic applications. In this study, we develop a reproducible protocol for efficient reprogramming mouse neural progenitor cells (NPCs) on human foreskin fibroblast (HFF) cells via retroviral transfer of human transcriptional factors OCT4/SOX2/KLF4/C-MYC. Two independent iPS cell lines are derived without exogenous LIF. They display typical undifferentiated morphology and express pluripotency markers Oct4 and Sox2. Transgenes are inactivated and the endogenous Oct4 promoter is completely demethylated in the established iPS cell lines, indicating a fully reprogrammed state. Moreover, the iPS cells can spontaneously differentiate or be induced into various cell types of three embryonic germ layers in vitro and in vivo when they are injected into immunodeficient mice for teratoma formation. Importantly, iPS cells extensively integrate with various host tissues and contribute to the germline when injected into the blastocysts. Interestingly, these two iPS cell lines, while both pluripotent, exhibit distinctive differentiation tendencies towards different lineages. Taken together, the data describe the first genuine mouse iPS cell lines generated on human feeder cells without exogenous LIF, providing a reliable tool for understanding the molecular mechanisms of nuclear reprogramming

    Automated Functional Analysis of Astrocytes from Chronic Time-Lapse Calcium Imaging Data

    No full text
    Recent discoveries that astrocytes exert proactive regulatory effects on neural information processing and that they are deeply involved in normal brain development and disease pathology have stimulated broad interest in understanding astrocyte functional roles in brain circuit. Measuring astrocyte functional status is now technically feasible, due to recent advances in modern microscopy and ultrasensitive cell-type specific genetically encoded Ca2+ indicators for chronic imaging. However, there is a big gap between the capability of generating large dataset via calcium imaging and the availability of sophisticated analytical tools for decoding the astrocyte function. Current practice is essentially manual, which not only limits analysis throughput but also risks introducing bias and missing important information latent in complex, dynamic big data. Here, we report a suite of computational tools, called Functional AStrocyte Phenotyping (FASP), for automatically quantifying the functional status of astrocytes. Considering the complex nature of Ca2+ signaling in astrocytes and low signal to noise ratio, FASP is designed with data-driven and probabilistic principles, to flexibly account for various patterns and to perform robustly with noisy data. In particular, FASP explicitly models signal propagation, which rules out the applicability of tools designed for other types of data. We demonstrate the effectiveness of FASP using extensive synthetic and real data sets. The findings by FASP were verified by manual inspection. FASP also detected signals that were missed by purely manual analysis but could be confirmed by more careful manual examination under the guidance of automatic analysis. All algorithms and the analysis pipeline are packaged into a plugin for Fiji (ImageJ), with the source code freely available online at https://github.com/VTcbil/FASP

    Pluripotency can be rapidly and efficiently induced in human amniotic fluid-derived cells

    No full text
    Direct reprogramming of human somatic cells into pluripotency has broad implications in generating patient-specific induced pluripotent stem (iPS) cells for disease modeling and cellular replacement therapies. However, the low efficiency and safety issues associated with generation of human iPS cells have limited their usage in clinical settings. Cell types can significantly influence reprogramming efficiency and kinetics. To date, human iPS cells have been obtained only from a few cell types. Here, we report for the first time rapid and efficient generation of iPS cells from human amniotic fluid-derived cells (hAFDCs) via ectopic expression of four human factors: OCT4/SOX2/KLF4/C-MYC. Significantly, typical single iPS cell colonies can be picked up 6 days after viral infection with high efficiency. Eight iPS cell lines have been derived. They can be continuously propagated in vitro and express pluripotency markers such as AKP, OCT4, SOX2, SSEA4, TRA-1-60 and TRA-1-81, maintaining the normal karyotype. Transgenes are completely inactivated and the endogenous OCT4 promoter is adequately demethylated in the established iPS cell lines. Moreover, various cells and tissues from all three germ layers are found in embryoid bodies and teratomas, respectively. In addition, microarray analysis demonstrates a high correlation coefficient between hAFDC-iPS cells and human embryonic stem cells, but a low correlation coefficient between hAFDCs and hAFDC-iPS cells. Taken together, these data identify an ideal human somatic cell resource for rapid and efficient generation of iPS cells, allowing us to establish human iPS cells using more advanced approaches and possibly to establish disease- or patient-specific iPS cells

    PLAGL2-EGFR-HIF-1/2α Signaling Loop Promotes HCC Progression and Erlotinib Insensitivity

    No full text
    Background and Aims: Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide, hence a major public health threat. Pleomorphic adenoma gene like-2 (PLAGL2) has been reported to play a role in tumorigenesis. However, its precise function in HCC remains poorly understood. Approach and Results: In this study, we demonstrated that PLAGL2 was up-regulated in HCC compared with that of adjacent nontumorous tissues and also correlated with overall survival times. We further showed that PLAGL2 promoted HCC cell proliferation, migration, and invasion both in vitro and in vivo. PLAGL2 expression was positively correlated with epidermal growth factor receptor (EGFR) expression. Mechanistically, this study demonstrated that PLAGL2 functions as a transcriptional regulator of EGFR and promotes HCC cell proliferation, migration, and invasion through the EGFR-AKT pathway. Moreover, hypoxia was found to significantly induce high expression of PLAGL2, which promoted hypoxia inducible factor 1/2 alpha subunit (HIF1/2A) expression through EGFR. Therefore, this study demonstrated that a PLAGL2-EGFR-HIF1/2A signaling loop promotes HCC progression. More importantly, PLAGL2 expression reduced hepatoma cells’ response to the anti-EGFR drug erlotinib. PLAGL2 knockdown enhanced the response to erlotinib. Conclusions: This study reveals the pivotal role of PLAGL2 in HCC cell proliferation, metastasis, and erlotinib insensitivity. This suggests that PLAGL2 can be a potential therapeutic target of HCC.Fil: Hu, Weiwei. China Pharmaceutical University; ChinaFil: Zheng, Shufang. China Pharmaceutical University; ChinaFil: Guo, Haixin. China Pharmaceutical University; ChinaFil: Dai, Beiying. China Pharmaceutical University; ChinaFil: Ni, Jiaping. China Pharmaceutical University; ChinaFil: Shi, Yaohong. China Pharmaceutical University; ChinaFil: Bian, Hanrui. China Pharmaceutical University; ChinaFil: Li, Lanxin. China Pharmaceutical University; ChinaFil: Shen, Yumeng. China Pharmaceutical University; ChinaFil: Wu, Mo. China Pharmaceutical University; ChinaFil: Tian, Zhoutong. China Pharmaceutical University; ChinaFil: Liu, Guilai. China Pharmaceutical University; ChinaFil: Hossain, Md Amir. China Pharmaceutical University; ChinaFil: Yang, Hongbao. China Pharmaceutical University; ChinaFil: Wang, Duowei. China Pharmaceutical University; ChinaFil: Zhang, Qin. Jiangsu Cancer Hospital; ChinaFil: Yu, Jun. Jiangsu Cancer Hospital; ChinaFil: Birnbaumer, Lutz. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; ArgentinaFil: Feng, Jifeng. Jiangsu Cancer Hospital; ChinaFil: Yu, Decai. Medical School Of Nanjing University; ChinaFil: Yang, Yong. China Pharmaceutical University; Chin
    corecore